
Java Quick Reference
Comments

// Everything to the end of the line is ignored. Use for most
comments.
/* Everything (possibly many lines) is ignored until a */.
Uncommon. Use for commenting out code.
/** Used for automatic HTML documentation generation. */

Identifier Names

•Start identifiers with an alphabetic character (a-z or A-Z), and
continue with alphabetic, numeric (0-9), or '_' (underscore)
characters. Do not use $.
•Second words in a name should start with an uppercase letter.
•Do not use special Java keywords.
•Class and interface names should start with an uppercase letter
(Graphics, String, Car, Motorbike...).
•Variable and method names should start with a lowercase letter
(repaint(), x, ...).
•Constants should be all uppercase with underscores between
words (BoxLayout.X_AXIS, Math.PI, ...).

Variables - Local, Instance, Class
Variables may be local, instance, or static (class) variables.
Parameters are local variables that are assigned values when
the method is called.

local instance static

Declared where? In a method. In class, but not
in a method.

In class, using
static keyword.

Initial value Assign a value
before using.
Compiler error if
you don't.

Number: zero
Object: null
Boolean: false
Or initialized in
constructor.

Number: zero
Object: null
Boolean: false
Or initialized in
static initializer.

Visibility Only in the same
method. No
visibility may be
declared.

private: Only
methods in this
class.
(Default): All
methods in same
package.
public: Anyone
can see it.
protected: This
class and all
subclasses can
see it.

Same as instance
variables.

Created when? When the method
is entered.

When an instance
of the class
(object) is
created with new.

When the
program is
loaded.

Where in
memory?

Call stack. Heap. "Permanent"
memory.

Destroyed when? When the method
returns.

When there are
no more
references to the
object.

When the
program
terminates.

Primitive Types

boolean (true/false)
Arithmetic types: byte, short, char, int, long, float, double

Expressions
Parentheses () have three uses:
1. Grouping to control order of evaluation, or for clarity.

Eg, (a + b) * (c - d)
2. After a method name to enclose parameters.

Eg, x = sum(a, b);
3. Around a type name to form a cast. Eg, i = (int)x;

Operator Precedence

1. Higher precedence are
done before lower
precedence.

2. Left to right among equal
precedence except: unary,
assignment, conditional
operators.

Remember only
1. unary operators
2. * / %
3. + -
4. comparisons
5. && ||
6. = assignments

Use () for all others

Arithmetic Operators

The result of arithmetic operators is double if either operand is
double, else float if either operand is float, else long if either
operand is long, else int.
i++ Add 1 to i
i-- Subtract 1 to i
n + m Addition. Eg 7+5 is 12, 3 + 0.14 is 3.14
n - m Subtraction
n * m Multiplication. Eg 3 * 6 is 18
n / m Division. Eg 3.0 / 2 is 1.5 , 3 / 2 is 1
n % m Remainder (Mod) after division of n by m. Eg 7 % 3 is 1

Comparing Primitive Values
The result of all comparisons is boolean (true or false).
==, !=, <, <=, >, >=

Logical Operators
The operands must be boolean. The result is boolean.
b && c “And”. true if both operands are true, otherwise false.

Short circuit evaluation. Eg (false && anything) is false.
b || c “Or”. true if either operand is true, otherwise false.

Short circuit evaluation. Eg (true || anything) is true.
!b “Not”. true if b is false, false if b is true.

Assignment Operators
= Left-hand-side must be an identifier/variable.
+= -= *= ...

All binary operators (except && and ||) can be
combined with assignment.
Eg a += 1 is the same as a = a + 1

Casts
Use casts when "narrowing" the range of a value. From
narrowest to widest the primitive types are: byte, short, char, int,
long, float, double. Objects can be assigned without casting up
the inheritance hierarchy. Casting is required to move down the
inheritance hierarchy (downcasting).
(t)x Casts x to type t

Object Operators
co.f Member. The f field or method of object or class co.
x instanceof co true if the object x is an instance of class co.
s + t String concatenation if one or both operands are Strings.

x == y true if x and y refer to the same object, otherwise false
(even if the values of the objects are the same!).

x != y As above for inequality.
Note: Compare object instances with .equals() or
.compareTo()
x = y Assignment copies the reference, not the object.

Flow of Control
if Statement
//----- if statement with a true clause
 if (expression) {
 statements // do these if expression is true
 }

//----- if statement with true and false clause
 if (expression) {
 statements // do these if expression is true
 } else {
 statements // do these if expression is false
 }

//----- if statements with many parallel tests
 if (expression1) {
 statements // do these if expression1 is true
 } else if (expression2) {
 statements // do these if expression2 is true
 } else if (expression3) {
 statements // do these if expression3 is true
 . . .
 } else {
 statements // do these no expression was true
 }
switch Statement
switch chooses one case depending on an integer value.
switch (expr) {
 case c1:
 statements // do these if expr == c1
 break;
 case c2:
 statements // do these if expr == c2
 break;
 case c3:
 case c4:
 case c5: // Cases can simply fall through.
 // do these if expr == any of c3, c4 or c5
 statements
 break;
 . . .
 default:
 statements // do these if expr != any above
}
while Loop
while (expression) {
 // do these continuously if expression == true
 statements
}
for Loop
for (initialStmt; testExpr; incrementStmt) {
 // do these continuously if testExpr == true
 statements
}

while and for can be almost equivalent:
int i = 0;
while (i < 5) {
 System.out.print("Hi!");
 i++;
}

for (i = 0; i < 5; i++) {
 System.out.print("Hi!");
}

Other loop controls
All loop statements can be labeled, so that break and continue
can be used from any nesting depth.
 break; //exit innermost loop or switch
 break label; //exit from loop label
 continue; //start next loop iteration
 continue label; //start next loop label

�

Put label followed by colon at front of loop, like this:
outer: for (. . .) {
 . . .
 continue outer;
}

Exceptions
Simple try...catch for exceptions
 try {
 . . . // statements that might cause exceptions
 } catch (exception-type x) {
 . . . // statements to handle exception
 }

throw
 throw exception-object;

��

Multiple catch clauses and finally clause
Executes first catch clause that specifies the exception class or a
super class. The finally clause is always executed (regardless of
whether there was an exception or not) so resources can be
cleaned up (for example, closing a file):
try {
 . . . // statements that might cause exceptions
} catch (exception-type x) {
 . . . // statements to handle exception
} catch (exception-type x) {
 . . . // statements to handle exception
} finally (exception-type x) {
 // statements that will always be executed
 // exception or not.
 . . .
}

Strings
String Concatenation
The + operator joins two strings together. If either operand is
String, the other is converted to String and concatenated with it.
This is a common way to convert numbers to Strings.
If a non-String object is concatenated with a String, its toString()
method is called. It's useful for debugging to write your own
toString() method in your classes.

"abc" + "def" "abcdef"

"abc" + 4 "abc4"

"1" + 2 "12"

"xyz" + (2+2 == 4) "xyztrue"

1 + "2.5" "12.5"

i = s.length() length of the string s.
String Comparison (use these instead of == and !=)
i = s.compareTo(t) compares to s.
 returns <0 if s<t, 0 if s==t, >0 if s>t
i = s.compareToIgnoreCase(t) same as above, but upper and
lower case are same
b = s.equals(t) true if the two strings have equal values
b = s.equalsIgnoreCase(t) same as above ignoring case
b = s.startsWith(t) true if s starts with t
b = s.endsWith(t) true if s ends with t
Searching (all "indexOf" methods return -1 if not found)
i = s.indexOf(t) index of the first occurrence of String t in s.
i = s.indexOf(t, i) index of String t at or after position i in s.
i = s.lastIndexOf(t) index of last occurrence of t in s.
i = s.lastIndexOf(t, i) index of last occurrence of t on or before i.
Strings - Getting parts
c = s.charAt(i) char at position i in s.
s1= s.substring(i) substring from index i to the end of s.
s1= s.substring(i, j) substring from index i to BEFORE index j.
Strings - Creating a new string from the original
s1= s.toLowerCase() new String with all chars lowercase
s1= s.toUpperCase() new String with all chars uppercase
s1= s.trim() with whitespace deleted from front and back
s1= s.replace(cs2, cs3) with all cs2 substrings replaced by cs3

StringBuilder
Faster String modification, more memory and CPU efficient.
sb = new StringBuilder() Creates empty StringBuilder
sb = new StringBuilder(s) Creates StringBuilder with String s.
sb = sb.append(x) Appends x (any type) to end of sb.
sb = sb.insert(offset, x) Inserts x (any type) at position offset.
sb = sb.setCharAt(index, c) Replaces char at index with c
sb = sb.deleteCharAt(i) Deletes char at index i.
sb = sb.delete(beg, end) Deletes chars at index beg to end.
sb = sb.reverse() Reverses the contents.
sb = sb.replace(beg, end, s) Replace chars beg to end with s.
indexOf, lastIndexOf, charAt, equals, substring just like String!

Arrays
To use and manipulate many data elements, either primitives or
objects. All elements must be of the same type. Arrays don't
expand!
Examples:
int[] scores; // Declares scores as array of integers.
scores = new int[12]; // Allocate memory, 12 values.
int[] scores = new int[12]; // Combined in one line.
Initialize an array
If no initial values are specified for array elements, array
elements are initialized to zero for numbers, null for object
references, and false for booleans.
Create and initialize in one line:
String[] names = {"Mickey", "Minnie", "Donald"};
Or in several lines:
String[] names = new String[3];
names[0] = "Mickey";
names[1] = "Minnie";
names[2] = "Donald";
Accessing elements of the array
scores[5] = 86; // Assign value 86 to the 5th value.
scores[i]++; // Increment score of element number i.
Iterating over an array
Size of an array can be found using length, eg, scores.length.

// Using standard for loop.
int[] scores = new int[12];
...Set values in scores array.
int total = 0;
for (int i = 0; i <
scores.length; i++) {
 total += scores[i];
}

//Using enhanced for loop.
int[] scores = new int[12];
. . . Set values in the scores array.
int total = 0;
for (int scr : scores) {
 total += scr;
}

Two-dimensional arrays
Almost always processed with nested for loops. Example:
static final int ROWS = 2;
static final int COLS = 4;
. . .
int[][] a2 = new int[ROWS][COLS];
. . .
//... Print array in rectangular form
for (int i =0; i < ROWS; i++) {
 for (int j = 0; j < COLS; j++) {
 System.out.print(" " + a2[i][j]);
 }
 System.out.println("");
}

Scanner
The main use of java.util.Scanner is to read values from
System.in or a file.
sc = new Scanner(System.in); Scanner which reads from
System.in.
sc = new Scanner(s); Scanner which reads from String s.
Most common "next" input methods.
s = sc.next() Returns next "token", more or less a "word".
s = sc.nextLine() Returns an entire input line as a String.
x = sc.nextXYZ() Returns value of type XYZ:
 Int, Double, Boolean, Byte, Float, Short.
b = sc.hasNext() True if another token is available to be read.
b = sc.hasNextLine() True if another line is available to be read.
b = sc.hasNextXYZ() True if another XYZ is available to be read.

Text File Input / Output
Example:
public static void copyFile(File fromFile, File
 toFile) throws IOException {
 Scanner freader = new Scanner(fromFile);
 BufferedWriter writer = new BufferedWriter(
 new FileWriter(toFile));

 //... Loop as long as there are input lines.
 String line = null;
 while (freader.hasNextLine()) {
 line = freader.nextLine();
 writer.write(line);
 writer.newLine(); // Write end of line.
 }

 //... Close reader and writer.
 freader.close(); // Close to unlock.
 writer.close(); // Close to unlock & flush to disk.
}

